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Abstract

Simple model of a slender beam loaded by a transverse follower force and undergoing a lateral flutter is used to

demonstrate the following phenomena:

1. If an analysis does not include any damping, an extraction of only two lowest eigenvalues can lead to a wrong con-

clusion that the critical load is infinite. This is so because, when the ratio of two principal rigidities of a beam is not

small, the eigenvalue with a positive real part emerges first not at the very beginning of the spectrum.

2. For the Kelvin-type material, and with no external damping, the critical load becomes infinitely small when the dam-

ping in the normal stress vanishes while the shear stress damping is finite.

3. When the external damping is increased, the critical load approaches the value calculated with no internal damping.

The nonlinear equilibrium is presented in the closed form and the eigenvalues of the torsional–flexural dynamic

perturbed equations are found by the finite element approach and subdomain collocation method. � 2001 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

The lateral stability of a beam under transverse follower force was analyzed first, apparently, by Bolotin
(1963) for a pinned configuration and by Como (1966) for a cantilever beam.
The finite element formulation for the problem in question was given in Barsoum (1971). Some appli-

cations of the Barsoum (1971) formulation are given in Attard and Somervaille (1987). In all these works
the prebuckling deformations and damping were ignored. For our purposes it is important also to em-
phasize that in Attard and Somervaille only two smallest eigenvalues were extracted to find a critical
force. As will be shown below, this is justified only when the ratio of two principal rigidities of a beam
is small.
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In this paper the uniform beam under follower bending load is analyzed. The goal of this analysis is to
estimate the effect of both internal and external damping on the critical load. It is also found that calculation
of only two lowest eigenvalues is insufficient when the ratio of two principal rigidities of a beam is larger than
0.42. In this case the eigenvalue with a positive real part emerges first not at the beginning of the spectrum.
The nonlinear equilibrium state for an uniform beam is found in a closed form so that no iterations are

needed. To analyze the stability of this equilibrium the eigenvalues of the perturbed equations of motion are
calculated by the finite element approach in conjunction with the subdomain collocation method, as de-
scribed in Detinko (2000). Using Mathcad 8 and 20 elements, all eigenvalues are easily extracted.

2. Equations of motion of an inextensional viscoelastic beam

For a slender beam the warping rigidity and the tension–torsion coupling may be neglected (see Hodges
and Peters, 1975). Thus, the Kirchoff equations of motion for an initially straight beam, loaded by terminal
forces, will be used.
In the coordinate system x1, x2, x3 where x1, x2 are principal axes of the cross-section, Fig. 1, and x3 is a

tangent to the deformed axis of the beam, equations of motion are (see Love, 1944)

F 0
1 � j3F2 þ j2F3 þ J1 ¼ 0 ð1Þ

F 0
2 þ j3F1 � j1F3 þ J2 ¼ 0 ð2Þ

F 0
3 � j2F1 þ j1F2 þ J3 ¼ 0 ð3Þ

M 0
1 � j3M2 þ j2M3 � F2 ¼ 0 ð4Þ

M 0
2 þ j3M1 � j1M3 þ F1 ¼ 0 ð5Þ

M 0
3 � j2M1 þ j1M2 ¼ 0 ð6Þ

Here

F ¼ ðF1; F2; F3ÞT; M ¼ ðM1;M2;M3ÞT; J ¼ ðJ1; J2; J3ÞT

is vector of internal force, moment, and inertia force, respectively. Components of curvature j1, j2 and
twist j3 are expressed in terms of Euler angles h, /, w as

Fig. 1. Notations and loading.
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j1 ¼ h0 sin/ � w0 sin h cos/

j2 ¼ h0 cos/ þ w0 sin h sin/ ð7Þ

j3 ¼ /0 þ w0 cos h

Euler angles define the direction of the moving coordinate system x1, x2, x3 with respect to fixed axes
ðx; y; zÞ; and relations

x0 ¼ sin h cosw; y 0 ¼ sin h sinw; z0 ¼ cos h ð8Þ

hold. In Eqs. (1)–(8) and elsewhere a prime denotes the derivative with respect to the dimensionless arc of
the deformed beam s=L. The forces, moments, and time are normalized by D2=L2, D2=L, k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2=mL4

p
respectively, where D2 is the largest principal bending rigidity and m is the mass per unit of length. Vector of
inertia force is

J ¼ �H €XX ; X ¼ ðx; y; zÞT

Elements of 3� 3 matrix H are equal to

h11 ¼ � sinw sin/ þ cosw cos/ cos h; h12 ¼ cosw sin/ þ sinw cos/ cos h

h21 ¼ � sinw cos/ � cosw sin/ cos h; h22 ¼ cosw cos/ � sinw sin/ cos h

h13 ¼ � sin h cos/; h23 ¼ sin h sin/

h31 ¼ sin h cosw; h32 ¼ sin h sinw; h33 ¼ cos h

ð9Þ

The constitutive relations

M1 ¼ d1ðj1 þ g _jj1Þ; M2 ¼ d2ðj2 þ g _jj2Þ; M3 ¼ d3ðj3 þ m _jj3Þ ð10Þ

where dk ¼ Dk=D2 ðk ¼ 1; 2; 3Þ, D2 PD1 are the bending rigidities, D3 is the torsional rigidity of a beam
with solid cross section and g; m are coefficients in the viscoelastic material relations r ¼ Eðe þ g _eeÞ,
s ¼ Gðc þ m _ccÞ: The similar relations were used in Nemat-Nasser and Tsai (1969) for the case of axial
eccentric load.

3. Equilibrium of the plane bending of an uniform beam

Consider a beam loaded in the plane of its greatest rigidity by a follower force P (Fig. 1). In the pre-
buckling configuration it can be assumed

F2 ¼ M1 ¼ M3 ¼ j1 ¼ j3 ¼ y ¼ / ¼ w ¼ J ¼ _jj1 ¼ _jj3 ¼ 0 ð11Þ

Eqs. (2), (4) and (6) are satisfied and Eqs. (1), (3), (5), (7) and (10) yield

F 0
1 þ j2F3 ¼ 0; F 0

3 � j2F1 ¼ 0; M 0
2 þ F1 ¼ 0; j2 ¼ h0; M2 ¼ j2 ð12Þ

From Eq. (12) one easily finds

F1 ¼ �j0
2; F3 ¼ C � j22=2 ð13Þ

where C is an integration constant and the curvature is to be found from nonlinear equation

j0
2 � Cj2 þ

1

2
j32 ¼ 0 ð14Þ

The solution of Eq. (14) is taken as
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j2 ¼ A
snðhsÞ
dnðhsÞ ; j0

2 ¼ hA
cnðhsÞ
dn2ðhsÞ

C ¼ ð2k2 � 1Þh2; A2 ¼ 4k2ð1� k2Þh2
ð15Þ

where snðx; kÞ, cnðx; kÞ, dnðx; kÞ are Jacoby elliptic functions of modulus k. The boundary conditions at the
loaded end F3ð0Þ ¼ M2ð0Þ ¼ 0, F1ð0Þ ¼ p yield

k2 ¼ 1=2; h2 ¼ p ð16Þ

From Eqs. (8) and (9) one finds

x0 ¼ sin h; z0 ¼ cos h; y0 ¼ 0
h12 ¼ h21 ¼ h23 ¼ h32 ¼ 0; h22 ¼ 1; h31 ¼ �h13 ¼ sin h; h33 ¼ h11 ¼ cos h

ð17Þ

and hence

J2 ¼ �€yy; J1 ¼ �ð€xx cos h � €zz sin hÞ; J3 ¼ �ð€xx sin h þ €zz cos hÞ

Using the boundary conditions at the clamped end hð1Þ ¼ xð1Þ ¼ zð1Þ ¼ 0 the rotation and displace-
ments can be calculated

hðsÞ ¼
Z 1

s
j2ðsÞ ¼ 2arc tan ½cnðhÞ	 � 2arc tan ½cnðhsÞ	

xðsÞ ¼
Z 1

s
sin hðsÞds; zðsÞ ¼

Z 1

s
½cos hðsÞ � 1	ds

ð18Þ

4. Perturbed equations

Let for each variable

Zðs; tÞ ¼ Z0ðsÞ þ Zpðs; tÞ

where Z0ðsÞ is the value of the variable from Section 3, and Zpðs; tÞ is small perturbation. Insert this in Eqs.
(1)–(10), neglect terms, nonlinear in perturbations and let

Zpðs; tÞ ¼ ZðsÞ expðqtÞ ð19Þ

The perturbed equations decouple in two groups.
Equations of bending in the plane of the greatest rigidity are

F 0
1 þ j20F3 þ F30j2 � qðX cos h0 � Z sin h0Þ ¼ 0
F 0
3 � j20F1 � F10j2 � qðX sin h0 þ Z cos h0Þ ¼ 0
d2ð1þ gqÞj0

2 þ F1 ¼ 0; X � qx ¼ 0; Z � qz ¼ 0
x0 � h cos h0 ¼ 0; z0 þ h sin h0 ¼ 0; h0 � j2 ¼ 0

ð20Þ

and equations of flexure–torsion out of this plane
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F 0
2 þ F10j3 � F30j1 � qY � lqy ¼ 0
d1ð1þ gqÞj0

1 � ½1� d3ð1þ mqÞ	j20j3 � F2 ¼ 0
d3ð1þ mqÞj0

3 þ ½1� d1ð1þ gqÞ	j20j1 ¼ 0
Y � qy ¼ 0; y 0 � w sin h0 ¼ 0
w0 sin h0 � h0

0/ þ j1 ¼ 0; w0 cos h0 þ /0 � j3 ¼ 0

ð21Þ

In Eqs. (20) and (21) the subscript 0 refers to the prebuckling configuration. The external friction force
l _yy was added in the first Eq. (21).

5. Flexure–torsion problem

Eq. (21) is a system of ODE with variable coefficients and their analytic solution is not possible. The
eigenvalue problem (21) with homogeneous boundary conditions

F2ð0Þ ¼ j1ð0Þ ¼ j3ð0Þ ¼ Y ð1Þ ¼ yð1Þ ¼ wð1Þ ¼ /ð1Þ ¼ 0 ð22Þ
will be solved by the finite element method. Interval (0,1) is divided by points si ¼ i=N , i ¼ 0; 1; . . . ;N into
N equal elements and each variable is interpolated by a linear function

ZðsÞ ¼ N1ðsÞZi þ N2ðsÞZiþ1

N1ðsÞ ¼ siþ1 � s
d

; N2ðsÞ ¼ s� si
d

; d ¼ siþ1 � si ¼ 1=N ð23Þ

Expression (23) is inserted into Eq. (21) and each Eq. (21) is integrated over the length of an element
(subdomain collocation method). For instance, the first Eq. (21) after discretization becomes

F2;iþ1 � F2;i � g2ij1;iþ1 � g1ij1;i þ f 2ij3;iþ1 þ f 1ij3;i � qnðYiþ1 þ YiÞ � qnlðyiþ1 þ yiÞ ¼ 0

g1i ¼
Z
F30N1ds; g2i ¼

Z
F30N2ds; f 1i ¼

Z
F10N1ds; f 2i ¼

Z
F10N2ds

n ¼
Z
N1ds ¼

Z
N2ds ¼ d=2 ð24Þ

where all integrals are from si to siþ1.
For each element the discrete system is written in a matrix form

ASiUi þ AEiUiþ1 � q½BSiUi þ BEiUiþ1	 ¼ 0; i ¼ 0; 1; . . . ;N ð25Þ
where the vector-column

Ui ¼ ðF2;i;K1;i;K3;i; Yi; yi;wi;/iÞ
T ð26Þ

The seven order matrix for the end of an element has a form:

AEi ¼

1 �g2i f 2i 0 0 0 0
�n d1 �ð1� d3Þc2i 0 0 0 0
0 ð1� d1Þc2i d3 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 �S2i 0
0 n 0 0 0 Si �c2i
0 0 �n 0 0 Ci 1

2
666666664

3
777777775

ð27Þ
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c2i ¼
Z

j20N2ds; S2i ¼
Z
N2 sin h0 ds

Si ¼ d�1
Z
sin h0 ds; Ci ¼ d�1

Z
cos h0 ds

Nonzero elements of the matrix BEi are:

b14 ¼ n; b15 ¼ nl; b22 ¼ �gd1; b23 ¼ �md3c2i; b32 ¼ gd1c2i; b33 ¼ �md3; b45 ¼ 1:

Matrix ASi for the start of an element is obtained from Eq. (27) replacing Ci by �Ci; and changing sign of
all diagonal elements. The sign of diagonal elements of BSi also must be changed. Besides, values
g2; f 2; c2; S2 are replaced by g1; f 1; c2; S1 which, in turn, are obtained replacing N2 by N1.

The eigenvalues equation is

detðA� qBÞ ¼ 0 ð28Þ

where system matrix A is assembled from element matrices as follows:

A ¼

as0 AE0 A0 A0 c0
a0 AS1 AE1 A0 c0
a0 A0 AS2 AE2 c0
a0 A0 A0 AS3 ae3

2
664

3
775 ð29Þ

Here matrices as0, ae3 reflect the boundary conditions and are obtained from matrices AS0;AE3 respectively
by deleting the appropriate columns. For instance, on the free end F2ð0Þ ¼ j1ð0Þ ¼ j3ð0Þ ¼ 0 and columns
number 1–3 in AS0 must be deleted to obtain as0: On the clamped end Y ð1Þ ¼ yð1Þ ¼ wð1Þ ¼ /ð1Þ ¼ 0 and
to obtain ae3 columns 4–7 must be deleted in AE3. Zero matrix A0 is of the seventh order; zero matrix a0
have the same number of columns as as0; zero matrix c0 have the same number of columns as ae3. The same
rules apply to matrix B.
Formula (29) is written for four elements but it clearly shows the simple assemble procedure for any

number of them.

6. Numerical results

Calculations were performed with 20 elements for the beam with a rectangular cross-section (Fig. 1).

6.1. Undamped analysis

For a width–height ratio b=h ¼ 0:6 the two lowest eigenvalues squared vs. dimensionless load

p ¼ PL2ffiffiffiffiffiffiffiffiffiffiffi
D1D3

p

are shown in Fig. 2. As usually for problems with follower force, at some load (pc ¼ 7:44 in Fig. 2) the two
dominant eigenvalues squared become equal. When the load is further increased, a pair of complex con-
jugate eigenvalues squared appear. Hence, one eigenvalue has a small positive real part and for p > pc ¼
7:44 the system is unstable.
For b=h ¼ 0:7 (Fig. 3) the picture is topologically different: the second eigenvalue increases with load and

both lowest eigenvalues squared remain negative. Based on this two eigenvalues only, one may conclude
that there is no critical load. However, at the load p ¼ pc ¼ 8:53943 a large positive eigenvalue squared
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emerges at the very end of the spectrum (spectrum is arranged in the order of an increased absolute value of
eigenvalues). This critical (positive) eigenvalue qN (where N is an ordinal number) is very sensitive to the
load, as demonstrated in the table below.

When the load is further increased, the positive eigenvalue reaches a minimum and then increases again.
Since for N > 16 (with 20 elements) all eigenvalues squared are infinite, one can say that the critical

eigenvalue squared changes the sign from minus to plus at infinity.
The switch from Fig. 2 to Fig. 3-type takes place at b=h � 0:65: The important dissimilarity between

these two types of instability is that for b=h < 0:65 the positive real part of critical eigenvalue near the
boundary of instability is very small, while otherwise it is very large. This must affect the initial vibrations.
The critical loads, calculated with no damping, are shown in Fig. 4, curve 1. This curve shows that for

b=h! 0 (no prebuckling deformations), the critical load pc ¼ 6:16 as compared to pc ¼ 6:99 in Como
(1966) for a concentrated mass, and pc � 6 in Attard and Somervaille (1987).
Note, that the in-plane follower critical load for a cantilever beam is PL2=D2 ¼ 39 (Vitaliani et al., 1997).

For b=h ¼ 0:8 this yields p ¼ PL2=
ffiffiffiffiffiffiffiffiffiffiffi
D1D3

p
¼ 68:6; so that even for a beam with almost quadratic cross-

section the lateral critical load, Fig. 4, is much lower than the in-plane one.
When the load p < pc an undamped analysis yields all pure imaginary eigenvalues. In accordance with

Liapunov theory, in this case the linearized perturbed equations (21) cannot serve to establish the stability
or instability of the equilibrium. One way to clarify the situation is to include in the analysis damping,
which produces nonzero real parts in the eigenvalues. The effect of both internal and external damping is
considered in the next subsection.

P qN N

8.53943 133000 16
8.53944 23300 14
8.53948 8250 13
8.53970 2680 11
8.54 1620 10
8.55 219 5

Fig. 2. Two lowest eigenvalues squared for b=h ¼ 0:6. No damping.
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6.2. Damped analysis

For the famous Beck problem (a column under axial follower load) the critical load decreases from 20.0
with no damping to 10.9 with a slight internal damping. When the external damping is added, the critical
load approaches the value 20.0 (see Denisov and Novikov, 1975; Langhtjem and Sugiyama, 2000).
For the problem under consideration the effect of damping on the critical load is shown in Fig. 4. Curve

2 represents the effect of internal damping alone when coefficients of damping for normal and shear stress

Fig. 4. Follower critical load vs. b ¼ b=h: (1) no damping; (2) equal coefficients of internal damping for the normal and shear stress,
g ¼ m ¼ 0:001. Coefficient of external damping l ¼ 0; (3) g ¼ m ¼ l ¼ 0:001.

Fig. 3. Two lowest eigenvalues squared for b=h ¼ 0:7. No damping.
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are equal, g ¼ m ¼ 0:001. The stabilizing effect of the external damping (curve 3) is significant for a narrow
rectangular but diminishes for a quadratic cross-section.
Destabilizing effect of the internal damping is even more significant for g ! 0, m 6¼ 0: the critical load in

this case tends to zero (Fig. 5). When the external damping is increased, the critical load grows and for
lP 1 exceeds the value, calculated with no damping. With any damping the critical eigenvalues are always
the two lowest.

7. Conclusion

The lateral stability analysis of a beam under follower load should include slight internal and realistic
external damping. With no damping the critical load will be overestimated. If the two principal rigidities of
a beam are not far apart (ratio is higher than 0.42), and only two lowest eigenvalues are extracted, the
wrong conclusion can be made that there is no finite critical load.
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